Develops geologic background, concepts, and principles through study of selected national parks and monuments. Examines the geologic framework and history, modern geologic processes, and factors influencing the present day landscape for each park area. Same as ESE 104.
Introduces Earth phenomena and processes. Includes minerals and rocks, continental drift, plate tectonics, rock deformation, igneous and sedimentary processes, geologic time, landscape evolution, internal structure and composition of the earth, groundwater, seismology and earthquakes, and formation of natural resources. Emphasizes the chemical and physical aspects of the Earth, and the basis for geological inference. Field trip required. Additional fees may apply. See Class Schedule. Credit is not given for both GEOL 107 and GEOL 100, GEOL 101 or GEOL 103. Prerequisite: Intended for science and science-oriented students.
Examines important theoretical and practical questions regarding the origin and evolution of life, as well as the search for life elsewhere in the universe. Uses the pioneering work of Carl Woese, whose "Tree of Life" revolutionized our understanding of the fundamental structure and evolutionary relatedness of all living entities on Earth. Same as ESE 111. Additional fees may apply. See Class Schedule.
Explores the dynamic intersection of science and cinema by evaluating depictions of the Earth sciences in Hollywood movies. Examines the scientific accuracy behind the on-screen depictions of natural hazards and evaluates the underlying processes that control their formation and dangers they represent. Provides practical insights on hazard preparedness and safety. Topics include Earthquakes, Volcanic Eruptions, Severe Weather, Asteroid Impacts, Space Travel, and Climate Change.
Introduces the nature, causes, risks, effects, and prediction of natural disasters including earthquakes, volcanoes, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, and meteorite impacts; covers scientific principles and case histories of natural disasters as well as human responses (societal impact, mitigation strategies, and public policy). Same as ESE 118 and GLBL 118.
Presents systematic analysis of formation and evolution of the Earth and its dynamic systems (lithosphere, hydrosphere, atmosphere, and biosphere). Also introduces methods of reconstructing Earth's history through use of geochronology, paleontology, and the stratigraphic records. Introduces the geological history of life evolution, mountain belts and continents, geochemical systems, climate, sea level, and the Earth's interior. Field trip required. Same as ESE 208. Additional fees may apply. See Class Schedule. Prerequisite: One of GEOL 100, GEOL 101, GEOL 103, GEOL 104 or GEOL 107; or consent of instructor.
Examines the relationship between people and the Colorado River, and how city, state, tribal, and federal leaders work to manage this important resource. Explores how the River came to be, how it has been used (and misused) throughout the human history of the desert Southwest, and how leaders are preparing for its future in the midst of a warming planet. Capstone is a required field trip to the region, with visits to key sites. Additional fees may apply. See Class Schedule. May be repeated in separate terms, if topics vary. Prerequisite: Restricted to LAS James Scholars students.
Studies the origin, identification, and environmental significance of earth materials (minerals, rocks, and soil). Environmental topics include: mineral resources; acid mine drainage; volcanic hazards; swelling soils; engineering strength, porosity/permeability, and architectural uses of earth materials; and asbestos. One day field trip is required. Same as ESE 333. Additional fees may apply. See Class Schedule. Credit is not given for both GEOL 333 and GEOL 432. Prerequisite: CHEM 102 and CHEM 103; GEOL 100 and GEOL 110, or one of GEOL 101, GEOL 103, GEOL 104 or GEOL 107; or consent of instructor.
Research and individual study in geology. May be repeated. A maximum of 8 hours of GEOL 390 plus GEOL 391 may be counted toward graduation. Prerequisite: GEOL 208 or equivalent; consent of supervising faculty member; advance approval by Department of Geology.
Research and individual study in geology for honors credit. May be repeated. A maximum of 8 hours of GEOL 390 plus GEOL 391 may be counted toward graduation. Prerequisite: GEOL 208 or equivalent; consent of supervising faculty member and of departmental honors advisor; advance approval by Department of Geology.
Same as GGIS 407. See GGIS 407.
Group field study in a prominent geologic locality; includes in-class meetings, student-led presentation, and field trip; trips run during spring break, winter break, in mid-end May or intercession; dates depend on location. Additional fees may apply. See Class Schedule. 2 to 8 undergraduate hours. 2 to 8 graduate hours. May be repeated. Prerequisite: Consent of instructor.
Introduction to: crystallography; crystal optics; structure, composition, properties, stability and geological occurrences of minerals; and mineral identification. Additional fees may apply. See Class Schedule. 4 undergraduate hours. 4 graduate hours. Credit is not given for both GEOL 333 and GEOL 432. Prerequisite: GEOL 208 and CHEM 104 and CHEM 105.
Introduces dynamics of sedimentation, geology of sedimentary basins, the distribution of geologic processes through time, definition and correlation of stratigraphic units, principles of paleogeography, stratigraphy and tectonics. Additional fees may apply. See Class Schedule. 4 undergraduate hours. 4 graduate hours. Prerequisite: GEOL 208 or consent of instructor.
Overview of how seismology, magnetics, gravity, geodesy, and surface geology can help us understand the Earth from its surface to its core as well as its temporal evolution. Topics include the internal composition and dynamics of Earth, generation of Earth's gravitational and geomagnetic fields, driving mechanisms for tectonic plate motion, continental deformation, and surface topography. Students wanting a more quantitative treatment of geophysics should enroll in GEOL 452. 3 undergraduate hours. 3 graduate hours. Credit is not given for both GEOL 450 and GEOL 452. Prerequisite: PHYS 102 or 212, GEOL 107 or 101, or consent of instructor.
Discusses geophysical methods to reveal subsurface structures. Topics include seismic methods, gravity, magnetics, electrical methods, ground penetrating radar, borehole geophysics, and their applications to hydrocarbon and mineral exploration as well as engineering and environmental investigations. 4 undergraduate hours. 4 graduate hours. Several required local trips for field experiments. Prerequisite: MATH 241 and PHYS 212; or consent of instructor.
Fundamental chemical and physical concepts applied to geological processes; topics include: origin, distribution, and geochemical behavior of elements; chemical evolution of the Earth; geochemistry of natural waters and sedimentary rocks; isotope geochemistry, crystal chemistry, trace element geochemistry and organic geochemistry. 3 undergraduate hours. 3 graduate hours. Prerequisite: GEOL 101 or GEOL 107; CHEM 104; CHEM 105; MATH 220 or MATH 221; or consent of instructor.
Students will conduct research under the direct supervision of a geology faculty member. Research topics will vary, and either a summary paper or a poster presentation at a regional or national science conference is required. 1 to 3 undergraduate hours. No graduate credit. Approved for Letter and S/U grading. May be repeated up to six hours. A maximum of 6 credit hours of GEOL 490 and GEOL 491 may be counted toward graduation. Prerequisite: GEOL 208 or equivalent; Consent of supervising faculty member; advance approval by Department of Geology. Intended primarily for sophomores and juniors; not available to freshman students.
Students will conduct research for honors credit under the direct supervision of a geology faculty member. Research topics will vary, and either a summary paper or a poster presentation at a regional or national science conference is required. 1 to 3 undergraduate hours. No graduate credit. May be repeated up to 6 hours. A maximum of 6 credit hours of GEOL 490 and GEOL 491 may be counted toward graduation. Prerequisite: GEOL 208 or equivalent; Consent of supervising faculty member and of departmental honors advisor; advance approval by Dept. of Geology. Intended primarily for sophomores and juniors who are James Scholars or Chancellor's Scholars; not available to freshman students.
Research in geology, with thesis; a thesis must be submitted for credit to be received. 2 to 8 undergraduate hours. No graduate credit. May be repeated. A maximum of 10 hours of GEOL 492 plus GEOL 493 may be counted toward graduation. Prerequisite: Consent of supervising faculty member.
Research in geology with honors thesis; a thesis must be submitted for credit to be received. 2 to 8 undergraduate hours. No graduate credit. May be repeated. A maximum of 10 hours of GEOL 492 plus GEOL 493 may be counted toward graduation. Prerequisite: Consent of supervising faculty member and of departmental honors advisor.
Group field study in a prominent geologic locality; includes in-class meetings, student-led presentation, and field trip; trips run during spring break, winter break, mid-end May or intercession; dates depend on location. Additional fees may apply. See Class Schedule. May be repeated. Prerequisite: Consent of instructor.
Introduction to the theoretical basis for isotopic fractionation in nature; survey of isotopic variations in natural materials; and application of isotopic variations to problems of geological and environmental significance. Prerequisite: Consent of instructor.
Brings students up-to-date with current research over a broad spectrum of geoscience; improves students' oral presentation skills by practice and example. Required for all graduate students in Geology. Approved for S/U grading only. May be repeated to a maximum of 12 hours. Prerequisite: Graduate standing in Department of Geology or consent of instructor.
Work may be taken in the following fields: (a) general geology; Field trip fee may be required for this section. (b) engineering geology; (c) geomorphology and glacial geology; (d) clay mineralogy; (e) ground-water geology; (f) geomicrobiology; (g) geological fluid dynamics; (h) mineralogy and crystallography; (i) paleontology; (j) geochemistry: (k) geophysics; (l) petrography and petrology; (m) sedimentology; (n) stratigraphy; (o) oceanography; (p) submarine geology; (q) structural geology and geotectonics; (r) mathematical geology; (s) sedimentary petrography; (t) petroleum geology; (u) coal geology; (v) isotope geology and geochronology; (w) electron beam analysis; (x) vulcanology; (y) environmental geology; and (z) planetology. Additional fees may apply. See Class Schedule. Approved for both letter and S/U grading. May be repeated.
Supervised individual research project in applied geology as a final requirement for non-thesis master’s degree in Geology. Applies theory and knowledge from program course work in applied Geology to a project in their profession through planning, research, and the collection, analysis, modeling, assimilation, and presentation of data. Student work closely with faculty capstone advisor to determine project focus and expected outcome(s). 4 to 8 graduate hours. No professional credit. May be repeated in separate terms to a maximum of 8 graduate hours. Prerequisite: Consent of academic advisor and research advisor and acceptance of the GEOL 598 Application, prior to enrollment. Restricted to students in the non-thesis M.S. in Geology program.
Individual research under supervision of members of the faculty in their respective fields. Approved for S/U grading only. May be repeated.